

Chester Metal Slide F

DESCRIPTION:

Chester Metal Slide is a two-element liquid composite based on molybdenum disulfide with very good lubricating properties. The material contains modified epoxy resins, molybdenum disulfide and fiber fillers. The epoxy composite cures at room temperature and is designed for filling, rebuilding, and bonding metal surfaces.

TYPICAL APPLICATION:

- SHAFT SLEEVES
- BEARINGS
- BUSHINGS
- SLIDEWAYS

- LOW FRICTION SURFACES
- RECONSTRUCTION OF THE SURFACE SEELING WORKING WITH O-RINGS
- **GUIDES**

Technical data				
Cured Density			1,45 g/cm ³	
Mix Ratio by Volume			whole pack	
Mix Ratio by Weight			9: 1	
Color			dark gray	
Tensile Shear (Stainless Steel)	ASTM 1002	ISO 4587	20,0 MPa	2900 psi
Tensile Shear (Mild Steel)	ASTM 1002	ISO 4587	19,0 MPa	2756 psi
Tensile Shear (Aluminum)	ASTM 1002	ISO 4587	12,2 MPa	1769 psi
Tensile Shear (Brass)	ASTM 1002	ISO 4587	11,6 MPa	1682 psi
Temperature Resistance Wet			100°C (-50°C)	212°F (-58°F
Temperature Resistance Dry			200°C (-50°C)	392°F (-58°F
Minimal working temperature			-50°C	-58 ^o F
Heat Distortion Temperature	ASTM D648		_	_
Ambiet Cure			65°C	149°F
Post Cure			121 °C	249 ⁰ F
Heat Distortion Temperature		DIN 53462		_
Ambiet Cure			61 °C	141°F
Post Cure			110 °C	230 ⁰ F
Working Life (68 ⁰ F)(20 ⁰ C)			25 min	
Cured Hardness	ASTM D2240		87D	
Compressive Strength	ASTM D695		1448 kg/cm ²	20595 psi
		ISO 604	142 MPa	20595 psi
Thermal conductivity coefficient			0,3 W/mK	
Flexural strength		ISO 178	94 MPa	13633 psi
Impact strength		ISO 179	5,5 kJ/m ²	

Chester Metal Slide F

DIRECTIONS FOR USE

Conditions during the application.

The product is not recommended to apply when the ambient temperature is below 4°C(39°F) and the relative humidity is above 90% or when condensation occurs on the surface to be repaired.

Surface preparation.

The surface in the part to be repaired shall be mechanically cleaned by means of blast cleaning, sanding, or with the help of the abrasive paper, grinders, pin-lift grinding wheels, etc. You should always aim at thoroughly remove all loose contamination and make the surface roughened. A correctly prepared surface shall be degreased using for ex. Chester Fast Cleaner F-7 or Chester Ultra Fast Degreaser F-6.

Mixing and application of the composition.

Use two different spatulas to take the Base and the Reactor. Mix both components until obtaining a uniform color. It is recommended to mix total content of the packaging. It is the best to place the necessary coat at once, carefully rubbing it into the base.

Once the mix was prepared it should be directly applied, because curing starts immediately and every late could weaken the adhesion.

Whereas the second coat of the material applying the first one can not to be fully cured.

Post curing

Post curing in temperature 80-110°C in minimum 2h, after initial cure considerably improves mechanical properties, heat and chemical resistance.

Optimal cure after 7 days in 20°C (68°F) and post-cure by heating to 100°C (212°F) for a period of up to 24 hours.

CURE TIME ACCORDING TO THE TEMPERATURE.

Ambient temperature [°C](°F)	Time for application [min]	Time for machining [h]
5(41°F)	50	16
10(50°F)	40	8
20(68 °F)	25	5
30(86°F)	10	2.5

It should be remembered that the rate of the reaction significantly depends, apart from the ambient temperature, on the quantity of the used material (the bigger mass of the mixed material, the reaction rate increases). The above presented times refer to the mass of 0.25 kg of the composite.

CHEMICAL RESISTANCE

Tests were carried at the temperature of 20° C (68° F). The tests were carried after 7 days of curing at the temperature of 20° C (68° F).

- 1 Prolonged immersion
- 2 Short-term immersion
- 3 Not recommended

Solvent	Chemical resistance		
Petrol	1		
Diesel fuel	1		
Brake fluid	1		
Motor oil	1		
Petroleum	1		
Nitric acid 10%	1		
Mineral oils	1		
Acetic acid 3%	1		
Hydrocarbons	1		
Hydrochloric acid 10%	1		
Ammonia 20%	1		
Water 100°C(212°F)	1		
Sea water	1		
Lubricating oils	1		
Chlorine	1		
Acetone	3		
Methylene Chloride	3		

Full table of chemical resistance is on the website http://www.chester.com.pl/GBA/multimedia/2/51/

OTHER INFORMATION Storage

The product should be stored in original packaging at temperature between $+0^{\circ}$ C (32 $^{\circ}$ F) to $+30^{\circ}$ C (86 $^{\circ}$ F).

ISO 9001:2000